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Abstract. First-order methods are often analyzed via their continuous-time models, where their
worst-case convergence properties are usually approached via Lyapunov functions. In this work,
we provide a systematic and principled approach to finding and verifying Lyapunov functions for
classes of ordinary and stochastic differential equations. More precisely, we extend the performance
estimation framework, originally proposed by Drori and Teboulle [Math. Program., 145 (2014),
pp. 451--482], to continuous-time models. We retrieve convergence results comparable to those of
discrete-time methods using fewer assumptions and inequalities and provide new results for a family
of stochastic accelerated gradient flows.

Key words. convex optimization, continuous-time models, first-order methods, worst-case analy-
ses, performance estimation, stochastic differential equations, ordinary differential equations

MSC codes. 90C25, 90C30, 68Q25, 90C22

DOI. 10.1137/22M1498486

1. Introduction. Convex optimization is an important tool in the numerical
analyst toolbox. It serves, among others, for framing modeling problems in data
science and signal processing. We consider optimization problems of the form

min
x\in Rd

f(x),(1.1)

where f is convex and differentiable. First-order methods (that gather information
about f by evaluating its gradient at past iterates) are very popular to solve these
problems, due to their attractive low cost per iteration, and due to the fact that data
science applications typically do not require very accurate solutions [9]. Gradient
descent is a common first-order method, which starts from a point x0 \in Rd and whose
iterates are given by the simple recursion

xk+1 = xk  - \gamma \nabla f(xk),(1.2)

where \gamma > 0 is a step size. Gradient descent with small step sizes is directly related
to the so-called gradient flow:

\.Xt =  - \nabla f(Xt), X0 = x0 \in Rd,(1.3)

with the notation \.Xt \triangleq d
dtXt and where the solution Xt of the ordinary differential

equation (ODE) verifies Xtk \approx xk with the identification tk = \gamma k. In numerical
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1559

integration, gradient descent (1.2) is also known as the explicit Euler scheme for
integrating gradient flows. Recently, Su, Boyd, and Cand\`es [42] have interpreted
Nesterov's accelerated gradient [29] in a similar fashion through its continuous-time
version, paving the way to several continuous-time analyses of accelerated methods
[39, 52, 51].

Many applications entail some randomness and require a stochastic modeling of
the function f , which is often defined in terms of an expectation f(x) = E\xi [ \~f(x, \xi )].
The function f is the expectation over some random variable \xi and accounts for
some stochastic modeling. When \xi is drawn uniformly from a finite set of possible
samples (\xi 1, . . . , \xi n), we have a finite sum f(x) = 1

n

\sum n
k=1

\~f(x, \xi k). As soon as the
number of data points n is large, computing the gradient of a finite sum, as it is done
in gradient-based methods, is possibly expensive (computing the gradient of each
element of the sum, which is possibly very large). Stochastic gradient descent (SGD)
provides an alternative with lower computational burden per iteration by evaluating
only the gradient of a single \~f(\cdot , \xi ik) per iteration:

xk+1 = xk  - \gamma \nabla \~f(xk, \xi ik),

where \gamma > 0 is the step size, and \xi ik is drawn uniformly at random in (\xi 1, . . . , \xi n).
Thereby \nabla \~f(xk, \xi ik) is an unbiased estimate of the full gradient: Eik [\nabla \~f(xk, \xi ik)] =
\nabla f(xk). Li, Tai, and E [25, 26] derived stochastic differential equations (SDEs) ap-
proximating SGD:

dXt =  - \nabla f(Xt)dt + \sigma (Xt)dBt,

where \sigma (Xt) is a noise parameter connected to parameters of the method, and these
were further developed by Shi et al. [41, 53]. Relying on approximate theorems
between SDEs and original stochastic gradient algorithms, SDEs have thus become
a tool for analyzing convergence speeds of discrete-time methods. Usually, gradient
flows (resp., first-order methods) are studied via worst-case convergence properties,
which hold for any function of a given class, and any trajectory generated by the
ODE (resp., optimization method). In many cases, continuous-time approaches seem
to allow for shorter, simpler, and thereby more intuitive proofs. They also bring
insights on what can be expected from optimization methods.

The analysis of continuous-time models often relies on Lyapunov stability ar-
guments, as in system theory and physics, where energy dissipation plays a crucial
role. The existence of such Lyapunov functions provides direct convergence proofs for
ODEs under consideration. The main challenge in the Lyapunov approach is to find
a suitable function that is decreasing along all trajectories generated by an ODE.

From an outsider point of view, these analyses are often seen as complicated and
technical to reach. In this work, we remedy this problem by extending the systematic
approach based on semidefinite programming (SDP) originally coined by Drori and
Teboulle [14] for certifying convergence of optimization methods. This technique is
referred as ``performance estimation problems"" (PEPs). The main contribution of
this work is to provide a tool for analyzing convergence of continuous-time models,
by constructing Lyapunov functions suited to a gradient-based ODE in a systematic
way, using small-sized SDP reformulations. Furthermore, this procedure benefits from
tightness properties, meaning that the feasibility of the SDP allows us to conclude that
there exists a Lyapunov function within the prescribed family of Lyapunov functions
under consideration. Reciprocally, infeasibility of the SDP allows us to conclude that
there exists no such valid Lyapunov function within the family.
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1560 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

1.1. Lyapunov functions. Lyapunov functions are a standard tool for dealing
with convergence properties of gradient flows. Such functions are also more generally
used for studying stability properties of dynamical systems [21]. More precisely, con-
sider a differentiable function f within a class \scrF and an ODE aiming at minimizing f .
For such a continuous dynamical system with a stationary point x \star \in argminxf(x),
we call \scrV : Rd \times R+ \rightarrow R a Lyapunov function if it is differentiable and satisfies the
following conditions for all trajectories Xt generated by the ODE:

\bullet \scrV (x, t) = 0 \Leftarrow \Rightarrow x = x \star ,
\bullet \scrV (Xt, t) \geqslant 0,
\bullet d

dt\scrV (Xt, t) \leqslant 0
for all t\geqslant 0.

Lyapunov functions are suited for deriving both linear (or exponential) and sub-
linear convergence rates. When looking for linear convergence rates (as we may expect
for strongly convex functions), we typically use d

dt\scrV (Xt) \leqslant  - \tau \scrV (Xt) instead of the
third condition, where \tau depends on the class of functions and on the ODE (for more
details see Remark 2.3). In this ad hoc definition, we enforced nonnegativity along
the trajectory Xt, but definitions often require nonnegativity on Rd [47]. There ex-
ist similar definitions of Lyapunov functions for discrete-time optimization methods
[47, 37, 24].

With this approach, convergence guarantees highly depend on how rich the family
of Lyapunov functions under consideration is. In this work, we use a family of qua-
dratic Lyapunov functions that is popular and natural for studying both discrete-time
[29, 15] and continuous-time [42] optimization schemes.

1.2. Prior works. Lyapunov functions are common for analyzing continuous-
time and discrete-time models in convex optimization. For example, convergence
proofs for Nesterov's accelerated gradient method typically rely on such Lyapunov
analyses [29], [15, Theorem 4.8]. In the recent paper [4], the authors proposed
Lyapunov-based analyses for many first-order methods, for linear and sublinear con-
vergence rates. Continuous-time versions of optimization methods also often involve
Lyapunov arguments, such as Nesterov's accelerated gradient flow introduced in [42]
and its high-resolution ODEs for strongly convex functions proposed in [39], or accel-
erated mirror descent, whose continuous-time dynamics were analyzed in [22].

Different techniques were developed to compute suitable Lyapunov functions. The
authors of [51] put forward an approach based on the Bregman Lagrangian for ac-
celerated methods in potentially non-Euclidean settings; this was further developed
in [52]. The authors of [13] directly derived Lyapunov functions from Hamiltonian
equations describing dynamics of ODEs. Using similar conservation laws in a dilated
coordinate system, [43] also generated Lyapunov functions in a principled way.

Given a class of functions and an optimization method, proving a convergence
rate mostly consists in combining inequalities characterizing the class of functions at
hand. Recently, the automated search for combinations of inequalities formulated as
semidefinite programs was pioneered by Drori and Teboulle [14] and led to the notion
of performance estimation problems. Their work was followed up in [50, 49] to provide
worst-case bounds in a principled way, and was extended to the Lyapunov framework
[47]. A competing strategy inspired by control theory was developed by [24, 19], where
Lyapunov functions for discrete-time models are constructed using integral quadratic
constraints (IQCs) and semidefinite programming; a similar approach was applied to
continuous-time models in [16]. Connections between Lyapunov functions obtained
via the IQC framework in continuous time and discrete time were highlighted by [37].
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1561

For stochastic differential equations (SDEs), convergence proofs can also be ob-
tained through the Lyapunov approach, together with Ito's calculus. For some well-
chosen Lyapunov functions, [30] analyzed SGD, SAGA [12], and SVRG [20]. The
authors of [53, 54] extended the framework of Bregman Lagrangian Lyapunov func-
tions [51] to the stochastic setting. To the best of our knowledge, a systematic way
of verifying a Lyapunov function for SDEs has not been developed yet.

1.3. Contributions and organization. In this work, we are concerned with
worst-case convergence analyses of ODEs and SDEs for modeling (stochastic) gradient
based optimization methods. We propose a principled approach to worst-case analyses
based on Lyapunov functions, SDPs, and Ito's calculus.

In section 2, we extend the performance estimation approach developed for opti-
mization methods to gradient flows, which originate from a (possibly strongly) convex
function. In short, we find Lyapunov functions as feasible points of certain linear ma-
trix inequalities (LMIs). All codes for reproducing numerical results can be found at
https://github.com/CMoucer/PEP ODEs. Following this work, we have also added
continuous-time models to the Python package PEPit [18]. After that, building on the
first part of this work for gradient-based ODEs, we analyze continuous-time versions
of stochastic optimization algorithms.

Section 3 studies properties of trajectories generated by SDEs that approximate
stochastic gradient methods. We obtain a simple version of the trade-off between
forgetting the initial conditions and diminishing the noise, with and without averaging.
It appears that decreasing step sizes, together with a nonuniform version of averaging,
allows us to reach an optimal trade-off between the two terms. Our results match
those obtained for the stochastic gradient method, but with more compact analyses
than those of the discrete-time setting.

In section 4, we prove that stochastic accelerated gradient flows require diminish-
ing step sizes to converge in our setting. In contrast to first-order stochastic gradient
flows, averaging does not preserve convergence for SDEs approximating accelerated
gradient methods with constant step size.

1.4. Assumptions. Throughout this work, functions to be minimized are con-
vex (see problem (1.1)). Under this assumption, stationary points are global minimiz-
ers. We restrict ourselves to continuous-time versions of gradient descent, accelerated
gradient descent, and stochastic gradient descent.

Let us recall a few basic definitions and properties characterizing the classes of
functions under consideration within the next sections. A function f : Rd \rightarrow R is
convex if for all x, y \in Rd, and for all \lambda \in [0,1], f(\lambda x+(1 - \lambda )y) \leqslant \lambda f(x)+(1 - \lambda )f(y).
Such functions (i.e., with full domain, dom(f) = Rd) are convex closed proper (CCP)
(i.e., their epigraphs are nonempty closed convex sets). For simplicity, we assume in
addition differentiability of f . Such a differentiable function f is convex if and only if
for all x, y \in Rd, f(y) \geqslant f(x)+\langle \nabla f(x), y - x\rangle . A differentiable function f is L-smooth
if its gradient is L-Lipschitz, that is if for any x, y \in Rd,

\| \nabla f(x)  - \nabla f(y)\| \leqslant L\| x - y\| .

Smoothness is a common assumption for analyzing optimization methods, which limits
the growth rate of the function. A convex differentiable function f is \mu -strongly convex
if for any x, y \in Rd it satisfies

\| \nabla f(x)  - \nabla f(y)\| \geqslant \mu \| x - y\| .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1562 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

Strong convexity ensures the function is not too flat, and the unicity of the minimizer
x \star . We denote by \scrF \mu ,L the family of L-smooth \mu -strongly convex functions from Rd

to R, with 0 \leqslant \mu \leqslant L \leqslant +\infty . Weaker assumptions than strong convexity are also
encountered in the literature for analyzing gradient algorithms and lead to similar
convergence guarantees. Among them, Bolte et al. [7, Appendix 5.2] proved linear
convergence of gradient descent under the \Lojasiewicz inequality, first introduced by
\Lojasiewicz [27]. Other relaxed versions of strong convexity followed [28].

2. A principled approach to Lyapunov functions for gradient flows. In
this section, we study convergence properties of the gradient flow and its accelerated
versions, via quadratic Lyapunov functions. In this context, we show that verifying
such a Lyapunov function can be formulated as verifying the feasibility of an LMI.
This framework allows us to search for Lyapunov functions and to derive convergence
bounds for nonautonomous gradient flows.

2.1. The gradient flow. Let us consider the gradient flow

\.Xt =  - \nabla f(Xt), X0 = x0 \in Rd.

Let x \star be a global minimizer of f . Without further assumptions, the function f
is decreasing along the trajectory Xt solution to the gradient flow. The Lyapunov
function \scrV (Xt) = f(Xt) - f(x \star ) is indeed nonnegative and equal to zero at x \star and has

a nonpositive derivative with respect to time d
dt\scrV (Xt) = \.Xt

\top \nabla f(Xt) =  - \| \nabla f(Xt)\| 2.
In the next section, we show how to obtain and verify such Lyapunov functions,

and their corresponding convergence rates in the case of gradient flow originating from
a strongly convex function.

2.1.1. Minimizing strongly convex functions. Let f be \mu -strongly convex
(i.e., f \in \scrF \mu ,\infty ) with \mu > 0, and let x \star be its unique minimizer such that f(x \star ) = f \star .
In this context, it is possible to prove linear convergence of the gradient flow to its
stationary point. Scieur et al. proved in [38, Proposition 1.1] the following convergence
bound in function values for the gradient flow:

f(Xt)  - f \star \leqslant e - 2\mu t(f(x0)  - f \star ).(2.1)

This convergence guarantee follows directly from the derivative with respect to time
of the Lyapunov function \scrV (Xt) = f(Xt)  - f \star , together with strong convexity (or

\Lojasiewicz inequality): d
dt\scrV (Xt) = \.Xt

\top \nabla f(Xt) =  - \| \nabla f(Xt)\| 2 \leqslant  - 2\mu (f(Xt)  - f \star ) =
 - 2\mu \scrV (Xt).

Given the specific gradient flows studied in this work, it is reasonable to search for
Lyapunov functions made of linear combinations of function values, and a quadratic
form in the trajectory Xt. We simply refer to them as quadratic Lyapunov functions:

\scrV a,c(Xt) = a \cdot (f(Xt)  - f \star ) + c \cdot \| Xt  - x \star \| 2,(2.2)

where a, c \geqslant 0 are constants that do not depend on t, such that the function \scrV a,c

is nonnegative and nonincreasing along the flow. Quadratic Lyapunov functions are
common for proving convergence of gradient flows and cover for instance the Lyapunov
function used to prove convergence of the gradient flow under strong convexity (2.1).
Given a Lyapunov function \scrV a,c, the idea is to find the largest nonnegative value \tau  \star 
such that the condition

d

dt
\scrV a,c(Xt) \leqslant  - \tau  \star \scrV a,c(Xt)(2.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1563

holds for any dimension d \in N, any function f \in \scrF \mu ,\infty , and any trajectory Xt gener-
ated by the gradient flow. After integration, (2.3) allows us to obtain a convergence
guarantee of the form \scrV a,c(Xt) \leqslant e - \tau  \star t\scrV a,c(X0). Given a certain Lyapunov function
\scrV a,c and a time t, we get that the largest acceptable \tau  \star is a solution to

 - \tau  \star = max
Xt\in Rd,d\in N,f\in \scrF \mu ,\infty 

d

dt
\scrV a,c(Xt),

subject to \scrV a,c(Xt) = 1,

\.Xt =  - \nabla f(Xt).

(2.4)

This minimization problem is invariant with respect to t. It is established in [50, 14]
that these so-called performance estimation problems (PEPs) can be formulated as
SDPs. Because of the variable f \in \scrF \mu ,\infty , the maximization problem (2.4) is infinite-
dimensional. Recall that a differentiable function f \in \scrF \mu ,\infty verifies for all points
x, y \in Rd, f(x) - f(y) - \langle \nabla f(y), x - y\rangle \geqslant \mu 

2 \| x - y\| 2. Using alternate variables ft, f \star ,
gt, and g \star (informally, ft = f(Xt), f \star = f(x \star ), gt = \nabla f(Xt), and g \star = \nabla f(x \star ) = 0), it
holds that

 - \tau  \star = max
Xt\in Rd,d\in N

d

dt
\scrV a,c(Xt),

subject to \scrV a,c(Xt) = 1,

\.Xt =  - gt,

fi  - fj  - \langle gj ,Xi  - Xj\rangle \geqslant 
\mu 

2
\| Xi  - Xj\| 2, \forall i, j = t,  \star .

(2.5)

The fact that (2.5) produces an upper bound on  - \tau  \star directly follows from the fact
that any sampled strongly convex function satisfies these inequalities at the sampled
points (here Xt and x \star ). Thereby, any feasible point to (2.4) corresponds to a feasible
point for (2.5) with the same objective value. In the other direction, [50, Corollary
2] (which provides a constructive way to obtain some f \in \scrF \mu ,\infty that interpolates the
triplets (Xi, gi, fi)i=t, \star ) ensures that any feasible point to (2.5) can be translated to a
feasible point to (2.4) with the same objective value, thereby reaching the equivalence
between formulations (2.4) and (2.5).

In a second stage, we introduce G = (
\| Xt - x \star \| 2 \langle Xt - x \star ,gt\rangle 
\langle Xt - x \star ,gt\rangle \| gt\| 2 ) \succcurlyeq 0, a Gram matrix

and a vector F = [ft, f \star ], thereby obtaining a semidefinite reformulation:

 - \tau  \star = max
G\succcurlyeq 0,F\in R2

b\top 0 F + Tr(A0G),

subject to b\top 1 F + Tr(A1G) \geqslant 0,

b\top 2 F + Tr(A2G) \geqslant 0,

b\top 3 F + Tr(A3G) = 1.

(2.6)

where A0 = ( 0  - c
 - c  - a ), A1 = (

 - \mu /2 1/2
1/2 0

), A2 = ( - \mu /2 0
0 0

), A3 = ( c 0
0 0 ), b0 = [0,0]\top ,

b1 = [ - 1, 1]\top , b2 = [1,  - 1]\top , and b3 = a[1,  - 1]\top . Consider the corresponding
Lagrangian, for F \in R2, G\succcurlyeq 0, \tau \in R, and \lambda 1, \lambda 2 \geqslant 0:

\scrL (F,G, \tau ,\lambda 1, \lambda 2) = b\top 0 F + Tr(A0G) + \tau \cdot (b\top 3 F + Tr(A3G)  - 1)

+ \lambda 1 \cdot (b\top 1 F + Tr(A1G)) + \lambda 2 \cdot (b\top 2 F + Tr(A2G)).

The saddle point of the Lagrangian is given by

\tau  \star = min
\tau ,\lambda 1\geqslant 0,\lambda 2\geqslant 0

max
F,G\succcurlyeq 0

\scrL (F,G, \tau ,\lambda 1, \lambda 2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1564 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

The Lagrangian dual of the SDP (2.6) is obtained by maximizing over F \in R2, G\succcurlyeq 0:

 - \tau  \star = min
\tau ,\lambda 1,\lambda 2

 - \tau ,

subject to S = A0 + \lambda 1A1 + \lambda 2A2 + \tau A3 \preccurlyeq 0,

b0 + \lambda 1b1 + \lambda 2b2 + \tau b3 = 0,

\tau \in R, \lambda 1, \lambda 2 \geqslant 0.

The equality with \tau  \star comes from strong duality, which holds via Slater's conditions (it
is relatively easy to show that there exists a Slater point using the same construction
as in [50, Theorem 6]). Finally, since any feasible \tau is a lower bound for \tau  \star , those de-
velopments allow arriving to the equivalence between verifying a quadratic Lyapunov
function and verifying the feasibility of an LMI.

Theorem 2.1. Let a, c, \tau \geqslant 0 and \mu > 0. The following assertions are equivalent:
\bullet The inequality d

dt\scrV a,c(Xt) \leqslant  - \tau \scrV a,c(Xt) is satisfied for all dimensions d\in N,
for all f \in \scrF \mu ,\infty , and all trajectory Xt solutions to the gradient flow (1.3),
where \scrV a,c is a quadratic Lyapunov function (2.2).

\bullet There exist \lambda 1, \lambda 2 \geqslant 0 such that

S =

\biggl( 
\tau c - \mu 

2 (\lambda 1 + \lambda 2)  - c + \lambda 1

2

 - c + \lambda 1

2  - a

\biggr) 
\preccurlyeq 0, \tau a = \lambda 1  - \lambda 2.(2.7)

Remark 2.2. As a corollary of our result and for the class of quadratic Lyapunov
functions (2.2) (and later (2.8), (2.11)), it turns out that only two interpolation in-
equalities in (Xt, x \star ) and (x \star ,Xt) are involved in convergence proofs for continuous-
time models (see Theorem 2.7 for second-order gradient flows). In other words, the
framework reveals shorter proofs in continuous time.

A few conclusions can be drawn from the LMI equivalence from Theorem 2.1.
For fixed value of a, c, \tau , the LMI provides a necessary and sufficient condition for a
quadratic Lyapunov function \scrV a,c to decrease at a specific rate \tau \geqslant 0 for all functions
in the class \scrF \mu ,\infty . Second, we can simultaneously optimize over the class of quadratic
Lyapunov functions and over the convergence rate. Indeed, given a rate \tau , the LMI is
jointly convex in \lambda 1, \lambda 2, a, c. Therefore, thanks to linearity of the feasibility problem in
\tau , a bisection search allows us to optimize over it and to find the worst-case guarantee
\tau  \star .

In Figure 1a, we obtain the fastest linear convergence rate that can be achieved
using quadratic Lyapunov functions (2.2) (and even for all Lyapunov functions, since
the rate is tight on a function f(x) = \mu 

2 \| x\| 
2
2 for any time t). Together with Theo-

rem 2.1 we retrieve the known linear worst-case convergence speed in e - 2\mu from Scieur
et al. [38, Proposition 1.1] without improvement. The numerical approach ensures
tightness of the procedure by construction, as it guarantees the existence of a numeri-
cal function f that exactly achieves this convergence guarantee (see Figure 1b and the
method in [48, Chapter 3]). The next section builds on the same technique to analyze
the gradient flow originating from a (possibly nonstrongly) convex function. In this
scenario, the difficulty comes from the time-dependence of Lyapunov functions.

2.1.2. Minimizing convex functions. Let f \in \scrF 0,\infty and x \star be a minimizer of
f . In this case, worst-case convergence rates are often sublinear. Again, as in discrete
time, it is possible to obtain convergence guarantees using time-dependent quadratic
Lyapunov functions.
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(a) Worst-case rate \tau  \star for the class of qua-
dratic Lyapunov functions (2.2)

.
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Xt  - x \star 

f
(X

t
)
 - 

f
 \star 

\mu 
2 x2
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(b) Reconstruction of a function f \in \scrF \mu ,\infty 
that interpolates x \star andXt, while matching
the convergence rate \tau  \star = 2\mu , with \mu = 0.1.

Fig. 1. Comparison between numerical values for \tau obtained by solving the LMI (2.7) and the
reference established in the literature [38, Proposition 1.1], for trajectories Xt generated by gradient
flow (1.3) originating from a \mu -strongly convex function.

The Lyapunov function \scrV (Xt, t) = t(f(Xt)  - f \star ) + 1
2\| Xt  - x \star \| 2 from [42, p. 7]

verifies d
dt\scrV (Xt, t) \leqslant 0 for any dimension d \in N, any function f \in \scrF 0,\infty , and any

trajectory Xt generated by the gradient flow (1.3) (proof : d
dt\scrV (Xt) = t\langle \nabla f(Xt), \.Xt\rangle +

f(Xt)  - f \star + \langle \.Xt,Xt  - x \star \rangle =  - t\| \nabla f(Xt)\| 2 + f(Xt)  - f \star  - \langle \nabla f(Xt),Xt  - x \star \rangle \leqslant 
 - t\| \nabla f(Xt)\| 2 using convexity). After integration between 0 and t, we recover a
convergence bound in function values from the literature [42, p. 7], [16, section 6.3.1]:

f(Xt)  - f \star \leqslant 
\| x0  - x \star \| 2

2t
.

Let us adapt the techniques from section 2.1.1 by considering quadratic Lyapunov
functions:

\scrV at,ct(Xt, t) = at(f(Xt)  - f \star ) + ct\| Xt  - x \star \| 2,(2.8)

where at, ct \geqslant 0 are functions differentiable with respect to time such that the function
\scrV at,ct is nonnegative and nonincreasing along the flow. When a quadratic Lyapunov
function decreases along the trajectory Xt, that is, d

dt\scrV at,ct(Xt) \leqslant 0, a convergence
guarantee in function values is given by

f(Xt)  - f \star \leqslant 
\scrV a0,c0(x0,0)

at
=

a0(f(x0)  - f \star ) + c0\| x0  - x \star \| 2

at
.

Verifying a quadratic Lyapunov function can be cast as verifying that the following
maximization problem is nonpositive:

0 \geqslant max
Xt\in Rd,d\in N,f\in \scrF 0,\infty 

d

dt
\scrV at,ct

subject to \.Xt =  - \nabla f(Xt).

Remark 2.3. The strongly convex case as defined above is a particular case of the
convex one, using a specific Lyapunov function \Phi (\cdot ), such that \scrV (Xt, t) = e\tau t\Phi (Xt)
where \Phi (Xt) = a \cdot (f(Xt) - f \star ) + c \cdot \| Xt  - x \star \| 2. Then, d

dt\scrV (Xt, t) \leqslant 0 is equivalent to
d
dt\Phi (Xt) \leqslant  - \tau \Phi (Xt).
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Theorem 2.4. Let at, ct \geqslant 0 be continuously differentiable with respect to time.
The following assertions are equivalent:

\bullet The inequality d
dt\scrV at,ct(Xt, t) \leqslant 0 is satisfied for all dimensions d \in N, all

functions f \in \scrF 0,\infty , and all trajectories Xt generated by the gradient flow
(1.3), where \scrV at,ct is a quadratic Lyapunov function defined in (2.8).

\bullet There exist \lambda 
(1)
t , \lambda 

(2)
t \geqslant 0 such that

S =

\Biggl( 
\.ct  - ct +

\lambda 
(1)
t

2

 - ct +
\lambda 
(1)
t

2  - at

\Biggr) 
\preccurlyeq 0, \.at = \lambda 

(1)
t  - \lambda 

(2)
t .

Proof. The LMI is obtained following the previous methodology (see Appen-
dix A.1).

Choosing \lambda 
(1)
t = 1, \lambda 

(2)
t = 0, together with ct = 1

2 and at = t, the conditions in
the LMI from Theorem 2.4 are satisfied. We retrieve the Lyapunov function \scrV (x, t) =
t(f(x)  - f \star ) + 1

2\| x - x \star \| 2 from [42, p. 7].
Similar to Theorem 2.1, the LMI from Theorem 2.4, and hence the problem

of looking for a Lyapunov function, is jointly convex in \lambda 
(1)
t , \lambda 

(2)
t , ct, at, \.at, \.ct.

This Lyapunov analysis can also be validated numerically, as for the gradient flow
originating from strongly convex functions.

2.2. Accelerated gradient flows. A major improvement to gradient descent
dates back to Nesterov [29], who introduced an accelerated gradient method (AGM):

xk+1 = yk  - \gamma \nabla f(yk),

yk+1 = xk+1 + \alpha k(xk+1  - xk),
(2.9)

where \gamma ,\alpha k \geqslant 0 depend on the class of functions to minimize. The combination of past
iterates allows more control over the accumulated error. The idea of incorporating
momentum was first introduced by Polyak [32] with the heavy-ball method, starting
from x0, x1 \in Rd, and for a momentum \alpha k > 0:

xk+2 = xk+1 + \alpha k(xk+1  - xk)  - \gamma \nabla f(xk+1).(2.10)

Yet, compared to Nesterov's accelerated gradient method, the heavy-ball method lacks
global acceleration beyond quadratics.

When the step size \gamma goes to zero, these schemes happen to be closely related to
second-order differential equations, where \beta t \geqslant 0 is a continuous function depending
on \alpha k:

\"Xt + \beta t
\.X + \nabla f(Xt) = 0.

Recently, accelerated gradient methods have been analyzed using second-order dif-
ferential equations [39, 37, 52, 19]. Reversely, the accelerated gradient method and
the heavy-ball method may be seen as discretization schemes of these second-order
ODEs, as many other schemes. Discretization techniques are, among others, discussed
by [53, 41, 52]. Taking integration theory's point of view, Scieur et al. [38] proved that
these multistep methods may even be seen as discretization schemes of the gradient
flow (for quadratics).

Again, ODEs and multistep first-order methods as defined above are often han-
dled using quadratic Lyapunov functions. We extend the systematic Lyapunov ap-
proach developed previously to accelerated gradient flows. Let \scrV at,Pt

be a quadratic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

0/
24

 to
 2

16
.1

65
.9

9.
30

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1567

Lyapunov function for second-order gradient flows, taken in the class of quadratic
functions

\scrV at,Pt
(Xt, t) = at(f(Xt)  - f \star ) +

\biggl( 
Xt  - X \star 

\.Xt

\biggr) \top 

(Pt \otimes Id)

\biggl( 
Xt  - X \star 

\.Xt

\biggr) 
,(2.11)

where P =
\bigl( p(11)

t p
(12)
t

p
(12)
t p

(22)
t

\bigr) 
, at \geqslant 0 are continuously differentiable with respect to time

and such that the Lyapunov function is nonnegative and nonincreasing along the
flow. After integration of a quadratic Lyapunov function \scrV at,ct between 0 and t, this
approach leads to convergence bounds, for instance, in function values f(Xt)  - f \star \leqslant 
\scrV (x0)
at

.

2.2.1. Minimizing strongly convex functions. Let f \in \scrF \mu ,L, with strong
convexity parameter \mu > 0, and let Nesterov's accelerated gradient method's parame-
ters by defined by \gamma = 1

L and \alpha =
1 - \surd 

\mu \gamma 

1+
\surd 
\mu \gamma in (2.9). When the step size \gamma goes to zero,

the continuous-time limit of yk in (2.9) is exactly the Polyak damped oscillator [32],

\"Xt + 2
\surd 
\mu \.Xt + \nabla f(Xt) = 0,(2.12)

as it has already been highlighted in previous works [16, 37, 39]. The heavy-ball
method (2.10) reaches the same continuous-time limit when reducing the step size.

Shi et al. [39] derived a convergence guarantee in f(Xt)  - f \star = \scrO (e - 
\surd 

\mu t

4 ) using
a Lyapunov-based approach. This bound was improved to f(Xt)  - f \star = \scrO (e - 

\surd 
\mu t)

by Wilson, Recht, and Jordan [52, Appendix B] using the Bregman--Lagrangian ap-
proach, and by Sanz-Serna and Zygalakis using the IQC framework [37, 16]. Using the
methodology from Theorem 2.1, we show that verifying linear convergence guarantees
using quadratic Lyapunov functions with constant parameters (2.11) can be cast as
an LMI.

Theorem 2.5. Let \mu > 0 and \tau \geqslant 0. Let a\geqslant 0, and let P be a symmetric matrix.
The following assertions are equivalent:

\bullet The inequality d
dt\scrV a,P (Xt) \leqslant  - \tau \scrV a,P (Xt), is satisfied for all dimensions d \in 

N, all functions f \in \scrF \mu ,\infty , and all trajectories Xt generated by the Polyak
damped oscillator (2.12), where \scrV a,P is a quadratic Lyapunov function (2.11).

\bullet There exist \lambda 1, \lambda 2, \nu 1, \nu 2 \geqslant 0, such that\left(    - \mu 
2 (\lambda 1 + \lambda 2) + \tau p11 p11  - 2

\surd 
\mu p12 + \tau p12  - p12 + \lambda 1

2

p11  - 2
\surd 
\mu p12 + \tau p12 2(p12  - 2

\surd 
\mu p22) + \tau p22  - p22 + a

2

 - p12 + \lambda 1

2  - p22 + a
2 0

\right)   \preccurlyeq 0,

\tau a = \lambda 1  - \lambda 2,\biggl( 
P 0
0 0

\biggr) 
+

\left(  \mu 
2 (\nu 1 + \nu 2) 0  - \nu 1

2
0 0 0

 - \nu 1

2 0 0

\right)  \succcurlyeq 0,

a = \nu 2  - \nu 1.

(2.13)

Proof. The equivalence is obtained using the methodology developed in sec-
tion 2.1.1 and introducing the Gram matrix G = P\top P , where P = ( \.Xt,Xt  - x \star , gt),
where gt holds for \nabla f(Xt). The first LMI refers to the nonincreasing condition for the
Lyapunov function. The second one refers to the positivity constraint \scrV a,P (Xt) \geqslant 0
for all dimensions d\in N, all functions f \in \scrF 0,\infty , and all trajectories Xt generated by
Polyak damped oscillator (2.12), as done for discrete-time methods in [47, Th. 7].
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(a) Best guarantees found within the class
of quadratic Lyapunov functions (2.11).
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(b) Lyapunov parameters P in (2.11) for
\tau = 4/3

\surd 
\mu and a = 1, as a function of the

condition number \mu .

Fig. 2. Comparison between the worst-case guarantee obtained numerically with PEP, and its
references, for the Polyak damped oscillator (2.12) originating from \mu -strongly convex functions, and
for quadratic Lyapunov functions (2.11).

As for the gradient flow, the LMI is jointly convex in \lambda 1, \lambda 2, \nu 1, \nu 2 \geqslant 0, in the
Lyapunov parameters a,P , and is linear in \tau . Hence, we can perform a bisection
search over \tau to find the fastest linear convergence rate that can be verified using
quadratic Lyapunov functions, as done in Figure 2a. The framework provides in
addition a numerical tool for choosing Lyapunov parameters for which the worst-case
linear convergence rate is achieved. Figure 2b helped in providing an intuition for
parameters in Corollary 2.6.

Corollary 2.6. Let \mu \geqslant 0. The function

\scrV (Xt) = f(Xt)  - f \star +

\biggl( 
Xt  - X \star 

\.Xt

\biggr) \top \biggl( \biggl( 
4/9\mu 2/3

\surd 
\mu 

2/3
\surd 
\mu 1/2

\biggr) 
\otimes Id

\biggr) \biggl( 
Xt  - X \star 

\.Xt

\biggr) 
verifies d

dt\scrV (Xt) \leqslant  - 4/3
\surd 
\mu \scrV (Xt) for all dimensions d \in N, all functions f \in \scrF \mu ,\infty ,

and all trajectories Xt generated by the Polyak damped oscillator (2.12). A tight rate
is achieved for f(x) = 1

2\mu x
2.

Proof. Taking \lambda 1 = 4/3
\surd 
\mu , \lambda 2 = 0, \nu 1 = 0, and \nu 2 = 1, we verify the LMI for this

Lyapunov function \scrV , with \tau = 4/3
\surd 
\mu .

This class of quadratic Lyapunov functions is inspired by [47] in discrete time,
where a stricter positivity condition on P \succcurlyeq 0 hindered proving tight convergence
of Nesterov's accelerated gradient. Similarly in our context, the Lyapunov function

from Corollary 2.12 is defined by P = (
4/9\mu 2/3

\surd 
\mu 

2/3
\surd 
\mu 1/2

), which is not positive semidef-

inite. Usually in the continuous-time models literature, we only consider matrices
P that are positive semidefinite, such as in the Lyapunov function from [37, 39,
Theorem 4.3],

\scrV (Xt) = f(Xt)  - f \star +
1

2

\biggl( 
Xt  - X \star 

\.Xt

\biggr) \top \biggl( \biggl( 
\mu 

\surd 
\mu \surd 

\mu 1

\biggr) 
\otimes Id

\biggr) \biggl( 
Xt  - X \star 

\.Xt

\biggr) 
,

which verifies d
dt\scrV (Xt) \leqslant  - \surd 

\mu \scrV (Xt) for all dimensions d \in N, all functions f \in \scrF \mu ,\infty 
and all trajectories Xt generated by the Polyak damped oscillator. This Lyapunov is
a feasible point of the LMI (2.13) from Theorem 2.5, with \tau =

\surd 
\mu , \lambda 1 =

\surd 
\mu , \lambda 2 = 0,
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\nu 1 = 0, \nu 2 = a = 1. By relaxing the condition P \succcurlyeq 0, we thus improve results from
Sanz-Serna and Zygalakis and Wilson et al. by a factor 4/3 in Corollary 2.6.

Figure 2a together with Corollary 2.6 allows us to conclude that this bound cannot
be improved when changing the Lyapunov function among the class of quadratic
functions (2.11).

2.2.2. Minimizing convex functions. As for the gradient flow, rates are sub-
linear when the accelerated gradient flow originates from convex functions. Let
f \in \scrF 0,L, \gamma \leqslant 1

L be the step size and \alpha k = k - 1
k+2 be the scheme parameter in Nesterov's

accelerated method. Su, Boyd, and Cand\`es [42, section 2] proved the connection
between the first-order scheme and a second-order ODE known as the accelerated
gradient flow (AGF):

\"Xt +
3

t
\.Xt + \nabla f(Xt) = 0.(2.14)

Su, Boyd, and Cand\`es [42, Theorem 3] proved that the following inequality is verified
for all functions f \in \scrF 0,\infty and all trajectories Xt generated by the accelerated gradient
flow (2.14):

f(Xt)  - f \star \leq 2
\| x0  - x \star \| 2

t2
.

Their proof exhibits a Lyapunov function \scrV (Xt, t) = t2(f(Xt)  - f \star ) + 2\| (Xt  - x \star ) +
t
2

\.Xt\| 2, which is decreasing along trajectories Xt (proof: d
dt\scrV (Xt, t) = 2t(f(Xt) - f \star )+

t2\langle \.Xt,\nabla f(Xt)\rangle +2\langle Xt - x \star + t
2

\.Xt,3 \.Xt+t \"Xt\rangle = 2t(f(Xt) - f \star ) - \langle \nabla f(Xt),Xt - x \star \rangle \leqslant 0
by convexity of f). In this context, we obtain again an LMI equivalence for verifying
a quadratic Lyapunov function (2.11).

Theorem 2.7. Let at \geqslant 0, Pt \succcurlyeq 0 be functions continuously differentiable with
respect to time. The following assertions are equivalent:

\bullet The inequality d
dt\scrV at,Pt

(Xt, t) \leqslant 0 is satisfied for all dimensions d \in N, all
functions f \in \scrF 0,\infty , and all trajectories Xt generated by the accelerated gra-
dient flow (2.14), where \scrV at,Pt is a quadratic Lyapunov function (2.11).

\bullet There exist \lambda 
(1)
t , \lambda 

(2)
t \geqslant 0 such that

S =

\left(     
\.p
(11)
t p

(11)
t  - 3

t p
(12)
t + \.p

(12)
t  - p

(12)
t +

\lambda 
(1)
t

2

p
(11)
t  - 3

t p
(12)
t + \.p

(12)
t 2(p

(12)
t  - 3

t p
(22)
t ) + \.p

(22)
t  - p

(22)
t + at

2

 - p
(12)
t +

\lambda 
(1)
t

2  - p
(22)
t + at

2 0

\right)     \preccurlyeq 0,

\.at = \lambda 
(1)
t  - \lambda 

(2)
t .

Proof. The proof follows those from Theorems 2.5 and 2.1.

The Lyapunov function \scrV (Xt, t) = t2(f(Xt) - f \star )+2
\bigm\| \bigm\| (Xt - x \star )+ t

2
\.X
\bigm\| \bigm\| 2 exhibited

by Su, Boyd, and Cand\`es [42, Theorem 3] is a feasible point of the LMI, with at = t2

and Pt = 2(
1 t/2

t/2 t2/4
) for the Lyapunov parameters, and \lambda 

(1)
t = t, \lambda 

(2)
t = 0. It is possible

to retrieve these results numerically, as was done for the accelerated gradient flow
originating from strongly convex functions.

2.3. Higher-order convergence and time dilation. In this section, we an-
alyze convergence of the first and second-order nonautonomous gradient flows and
provide convergence guarantees depending on their parametrization. It appears that
higher-order convergence of nonautonomous gradient flows is highly connected to time
dilation.
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2.3.1. A nonautonomous first-order gradient flow. Let f \in \scrF 0,\infty . Let the
nonautonomous first-order gradient flow be defined by

\.Xt =  - \alpha t\nabla f(Xt), X0 = x0 \in Rd,(2.15)

where \alpha t \geqslant 0 is a continuous function (such that the flow is converging). It is natural
to wonder if it is possible to accelerate such gradient flows by changing \alpha t. A change
of variable connects this ODE to the gradient flow (1.3), for which \alpha t = 1. Let Yt

be the solution to the gradient flow and \tau t =
\int t

0
\alpha sds be a time rescaling. Then, the

variable Xt = Y\tau t verifies \.Xt = d
dtY\tau t = \alpha t

\.Y\tau t =  - \alpha t\nabla f(Y\tau t) =  - \alpha t\nabla f(Xt), which is
exactly the nonautonomous gradient flow. The following corollaries can be obtained
by performing this change of variable in Theorem 2.4.

Corollary 2.8. Let \mu \geqslant 0.
\bullet If \mu > 0, the function \scrV (Xt, t) = e2\mu 

\int t
0
\alpha sds(f(Xt)  - f \star ) verifies d

dt\scrV (Xt, t) \leqslant 
 - 2\mu \alpha t\scrV (Xt, t) for all dimensions d \in N, all functions f \in \scrF \mu ,\infty , and all
trajectories Xt generated by the nonautonomous gradient flow (2.15).
A convergence guarantee is given by f(Xt)  - f \star \leqslant e - 2\mu 

\int t
0
\alpha sds(f(x0)  - f \star ).

\bullet If \mu = 0, the function \scrV (Xt, t) = (
\int t

0
\alpha sds)(f(Xt)  - f \star ) + 1

2\| Xt  - x \star \| 2 ver-
ifies d

dt\scrV (Xt, t) \leqslant 0 for all dimensions d \in N, all functions f \in \scrF 0,\infty , and
all trajectories Xt generated by the nonautonomous gradient flow (2.15). A
convergence guarantee is given by f(Xt)  - f \star \leqslant 1

2
\int t
0
\alpha sds

\| x0  - x \star \| 2.

Remark 2.9. When \alpha t = 1 above, that is, \tau t = t, we recover exactly the Lyapunov
functions \scrV (Xt, t) = t(f(Xt) - f \star )+ 1

2\| Xt - x \star \| 2 from Theorem 2.4 for convex functions,
and \scrV (Xt) = e2\mu t(f(Xt)  - f \star ) from Theorem 2.1 for strongly convex functions.

As mentioned by Orvieto and Lucchi [30] in the stochastic setting, and for accel-
erated methods by Wibisono, Wilson, and Jordan [51], one can thus work either with
Xt generated by the nonautonomous gradient flow (2.15) or with Yt generated by the
gradient flow. However, acceleration on Xt is not preserved after discretizing the flow.
For example, applying an explicit Euler scheme to the nonautonomous gradient flow
(2.15) with \alpha s = \alpha > 0 and originating from a function f \in \scrF 0,L, a condition on step
sizes h arises, 0 \leqslant h\leqslant 2

L\alpha .
When focusing on continuous-time models for analyzing explicit first-order meth-

ods, we usually prefer working with the gradient flow (1.3). However, the nonau-
tonomous gradient flow (2.15) may be useful for analyzing other methods such as
proximal methods. More generally, in the next section, we analyze a family of second-
order gradient flows without adjusting the time scale (taking \alpha t = 1).

2.3.2. A nonautonomous second-order gradient flow. Nesterov's acceler-
ated gradient flow reaches an \scrO ( 1

t2 ) convergence in function values (see Theorem 2.7).
We study convergence properties of a nonautonomous second-order gradient flow and
compare them with those of the accelerated gradient flow for the family of quadratic
Lyapunov functions (2.11). Let \beta t \geqslant 0 be a continuous function, and a second-order
nonautonomous gradient flow
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1571

\"Xt + \beta t
\.Xt + \nabla f(Xt) = 0.(2.16)

Remark 2.10. Wibisono, Wilson, and Jordan [51, Theorem 2.2] proved that this
ODE is related to the family of ODEs defined by \.Yt + \~\beta tYt + \~\alpha t\nabla f(Yt) = 0. Let
\alpha t > 0 be a continuously differentiable function with respect to time, \tau t =

\int t

0
\alpha sds

a time rescaling and Xt a solution to (2.16). The trajectory Yt = X\tau t is solution
to \"Yt + (\beta \tau t

\surd 
\alpha t  - \.\alpha t

2\alpha t
) \.Yt + \alpha t\nabla f(Yt) = 0. In contrast with \alpha t in (2.15), note that

changing \beta t in (2.16) does not correspond to a time rescaling.

Theorem 2.11 provides a systematic condition for the function \scrV taken among
the class of quadratic Lyapunov functions (2.11) to be a Lyapunov function for the
second-order gradient flow (2.16).

Theorem 2.11. Let at \geqslant 0 and Pt \succcurlyeq 0 be continuously differentiable with respect
to time, and let \mu \geqslant 0. The following assertions are equivalent:

\bullet The inequality d
dt\scrV at,Pt

(Xt, t) \leqslant 0 is satisfied for all dimensions d \in N, all
functions f \in \scrF \mu ,\infty , and all trajectories Xt generated by the nonautonomous
second-order gradient flow (2.16), where \scrV at,Pt

is a quadratic Lyapunov func-
tion of the form (2.11).

\bullet There exist \lambda 
(1)
t , \lambda 

(2)
t \geqslant 0 such that

\left(    
 - \mu 

2 (\lambda 
(1)
t + \lambda 

(2)
t ) + \.p

(11)
t p

(11)
t  - \beta tp

(12)
t + \.p

(12)
t  - p

(12)
t +

\lambda 
(1)
t

2

p
(11)
t  - \beta tp

(12)
t + \.p

(12)
t 2(p

(12)
t  - \beta tp

(22)
t ) + \.p

(22)
t  - p

(22)
t + at

2

 - p
(12)
t +

\lambda 
(1)
t

2  - p
(22)
t + at

2 0

\right)    \preccurlyeq 0,

\.at = \lambda 
(1)
t  - \lambda 

(2)
t .

(2.17)

The LMI (2.17) from Theorem 2.11 is parametrized by \beta t. When \beta t = 3
t and

\mu = 0, we recover Theorem 2.7 for Nesterov's accelerated gradient flow.

Corollary 2.12. Let \mu \geqslant 0. The function

\scrV (Xt, t) = at(f(Xt)  - f \star ) +
1

2at
\| at \.Xt + \.at(Xt  - x \star )\| 2,

with at defined by
\bullet if \mu > 0, at = e\tau t, with \tau = min(

\surd 
\mu , 23\beta t),

\bullet if \mu = 0, at = min
\bigl( 
(
\surd 
a0 + (

\sqrt{} 
p
(11)
0 /2)t)2, lim\epsilon \rightarrow 0,\epsilon >0 a\epsilon e

\int t
\epsilon 

2
3\beta sds

\bigr) 
,

verifies d
dt\scrV (Xt, t) \leqslant 0 for all dimensions d \in N, all functions f \in \scrF \mu ,\infty , and all

trajectories Xt generated by the second-order gradient flow (2.16).

Proof. The proof follows from Theorem 2.11 and is detailed in Appendix A.2.

Given a convex function f \in \scrF 0,\infty and a quadratic Lyapunov function, Corol-
lary 2.12 allows us to conclude the following about the convergence of the second-
order gradient flow (2.16): given the class of quadratic Lyapunov functions (2.11), it
cannot converge faster in function values than Nesterov's accelerated gradient flow,
i.e., not faster than \scrO ( 1

t2 ).
To analyze Nesterov's accelerated gradient methods using ODEs, Su, Boyd, and

Cand\`es [42] introduced a parametrized second-order gradient flow that fits the model
(2.16):

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

0/
24

 to
 2

16
.1

65
.9

9.
30

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1572 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

\"Xt +
r

t
\.Xt + \nabla f(Xt) = 0,(2.18)

where r \geqslant 0. When r \geqslant 3, the guarantee f(Xt)  - f \star \leqslant (r - 1)2\| x0 - x \star \| 2

2t2 holds for
any function f \in \scrF 0,\infty and any trajectory Xt generated by the accelerated gradient
flow (2.18) [42, Theorem 5]. When r < 3, Attouch, Chbani, and Riahi [1, Theorem
2.1] proved a convergence bound in function values f(Xt)  - f \star = \scrO ( 1

t2r/3
). Using

Corollary 2.12, we retrieve a similar bound in function values f(Xt) - f \star \leqslant 
2\| x0 - x \star \| 2r2

9t
2r
3

.

Remark 2.13. Polynomial convergence can be achieved up to a time rescaling, as
was shown by Wisobono, Wilson, and Jordan [51]. Given \tau t = tp/2 (\alpha t = p

2 t
p/2 - 1), Nes-

terov's accelerated gradient flow (r = 3) transforms into \"Xt+
p+1
t

\.Xt+
p2

4 tp - 2\nabla f(Xt) =
0 for p \geqslant 2. Corollary 2.12 ensures convergence in function values f(Xt)  - f \star \leqslant 
\| x0 - x \star \| 2

2tp for all dimensions d \in N, all functions f \in \scrF 0,\infty , and all trajectories Xt

generated by the second-order gradient flow (2.16).

We have extended the performance estimation approach to continuous-time mod-
els using Lyapunov functions. Given a (possibly accelerated) gradient flow and a class
of functions, we presented a semidefinite formulation equivalent with the existence of
a certain type of quadratic Lyapunov function. The next section is devoted to the
analysis of continuous-time models approximating SGD.

3. SDEs for modeling SGD. Convergence results for stochastic convex op-
timization often require additional assumptions on problem classes, refined choices
of step sizes, and averaged iterates. Their analyses raise more complex proofs in
contrast with deterministic methods. Prior works have been concerned with con-
nections between stochastic methods and stochastic differential equations (SDEs)
[25, 30, 53, 40, 39]. This section is devoted to convergence analyses of SDEs ap-
proximating stochastic methods using a systematic Lyapunov approach. Verifying a
small-sized LMI will be sufficient (but not necessary) for verifying a quadratic Lya-
punov function.

Stochastic gradient descent (SGD) is given by

xk+1 = xk  - \gamma \nabla \~f(xk, \xi ik),(3.1)

where \gamma > 0 is the step size, \xi ik are uniformly drawn in (\xi 1, . . . , \xi n), and where
\nabla \~f(xk, \xi ik) is an unbiased estimate of full gradient \nabla f(xk). Li, Tai, and E [25]
introduced stochastic modified equations (SMEs) to model SGD, rewriting it as

xk+1 = xk  - \gamma \nabla \~f(xk, \xi ik) +
\surd 
\gamma Vk(xk),

where Vk(x) =
\surd 
\gamma (\nabla f(xk) - \nabla \~f(xk, \xi ik)) has zero mean and a covariance matrix equal

to \gamma \Sigma (xk) = \gamma (
\sum n

i=1(\nabla f(xk)  - \nabla \~f(xk, \xi ik))(\nabla f(xk)  - \nabla \~f(xk, \xi ik))\top ).
The corresponding SDE is given by

dXt =  - \nabla f(Xt)dt + (\gamma \Sigma (Xt))
1/2dBt,(3.2)

where Bt is a standard Brownian motion. The SDE (3.2) is an (order-1 weak) approx-
imation of SGD [25, Theorem 1], [26], which allows us to take into account the role of
constant step size in the dynamics of SGD (while keeping them small). Under mild
assumptions on f , Li, Tai, and E [26] proved the weak approximation of SGD by this
SDE on a finite interval [0, T ]: there exists C > 0 such that \| E[xk] - E[X(k\gamma )]\| \leqslant C\gamma 
for k \in [0, T\gamma ]. However, the approximation point of view from this approach is rela-
tively limited since C depends exponentially on T .
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1573

Remark 3.1. The SDE (3.2) is an approximation of SGD for small step sizes
\gamma \geqslant 0. When the step size goes to zero, the noise term actually disappears, and the
limiting ODE of SGD is exactly the gradient flow (1.3). In contrast, the stochastic
Langevin dynamics [31] xk+1 = xk  - \gamma \nabla f(xk)  - \surd 

\gamma \xi k have the limiting ODE dXt =
 - \nabla f(Xt)dt +

\surd 
2dBt, where the step size is not taken into account.

Compared to gradient descent, SGD does not converge to a stationary point under
constant step sizes [3, 46]. Convergence to a stationary point requires diminishing step
sizes such as \gamma k = 1\surd 

k
. Li, Tai, and E [25, section 4.1] (and later Orvieto and Lucchi

[30, section 2.1]) proposed to include this varying learning rate in the dynamics:

xk+1 = xk  - \gamma hk\nabla f(xk),

where \gamma is the maximum allowed learning rate and hk \in [0,1] is the time-varying part.
For ht \geqslant 0 a continuous function playing the role of step sizes hk, the SDE is

dXt =  - ht\nabla f(Xt)dt + ht(\gamma \Sigma (Xt))
1/2dBt.(3.3)

We treat the covariance matrix \Sigma (Xt) as symmetric, as already implied by the nota-
tion \Sigma (Xt)

1/2, but unstructured with bounded variance \Sigma (Xt) \preccurlyeq \Sigma along any trajec-
tory Xt generated by the approximating SDE (3.3). Compared to ODEs, functions
f \in \scrF 0,L to be optimized using SDEs are in addition assumed to be possibly L-smooth
with L\in (0,\infty ] and to be twice continuously differentiable.

In this section, we analyze approximating SDEs with averaging techniques and
include time-varying step sizes later. Verifying Lyapunov functions thanks to small-
sized LMIs, we retrieve convergence results from discrete-time optimization methods,
using appropriate choices of step sizes.

3.1. Lyapunov functions do not always extend to the stochastic setting.
The analysis of the gradient flow in the deterministic case provides Lyapunov functions
that are decreasing along any trajectory generated by (1.3) (see section 2). The direct
transfer of these Lyapunov functions to the stochastic setting is not always suited to
the variance term, as detailed below. Under constant step sizes \gamma > 0 (and ht = 1),
an approximating SDE of SGD is

dXt =  - \nabla f(Xt)dt + (\gamma \Sigma (Xt))
1/2dBt.

In SDE theory, a differential with respect to time of a function of a solution to a
stochastic process is given by Ito's lemma [44, Theorem 4.2].

Lemma 3.2 (Ito's lemma). Let g be a twice continuously differentiable function
and Xt be a stochastic process solution to the SDE (3.2); then

dg(Xt, t) =
\partial 

\partial t
g(Xt, t)dt +

\partial 

\partial x
g(Xt, t)dXt +

1

2
\gamma Tr

\biggl( 
\partial 2

\partial x2
g(Xt, t)\Sigma (Xt)

\biggr) 
dt.

3.1.1. Minimizing strongly convex functions. When the SDE originates
from (possibly nonsmooth) strongly convex functions f \in \scrF \mu ,\infty , the Lyapunov func-
tion from the deterministic setting extends well to SDEs. In the deterministic set-
ting, we have shown in Theorem 2.1 that the function \scrV (x, t) = e2\mu t(f(x)  - f \star ) is a
Lyapunov function along the gradient flow. Given Xt a solution to the SDE (3.2),
d
dtE\scrV (Xt, t) \leqslant 1

2e
2\mu t\gamma ETr(\nabla 2

xxf(Xt)\Sigma (Xt)) follows from Ito's formula. After integra-
tion between 0 and t, we have

E(f(Xt)  - f \star ) \leqslant e - 2\mu t

\biggl( 
f(x0)  - f \star +

1

2
\gamma 

\int t

0

e2\mu sETr(\nabla 2
xxf(Xs)\Sigma (Xs))ds

\biggr) 
.
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1574 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

We cannot conclude about the convergence of the trajectory Xt without additional
requirements on the problem class. For example, let the smoothness parameter of f
be finite L < \infty and recalling the bounded covariance assumption \Sigma (Xt) \preccurlyeq \Sigma , the
variance term is bounded by 1

2L\gamma Tr(\Sigma ). Therefore, under constant step sizes, the
SDE approximating SGD converges to a diffusion. In addition, it cannot get to a
stationary point x \star , because of the extra term, which depends linearly in the step size
\gamma . As in the deterministic case, the forgetting of initial conditions remains of order
\scrO (e - 2\mu t).

3.1.2. Minimizing convex functions. When f \in \scrF 0,\infty , Lyapunov functions
induce convergence bounds with a possibly diverging variance term. When consid-
ering the deterministic gradient flow (1.3) originating from functions f \in \scrF 0,\infty , the
Lyapunov function \scrV (x, t) = t(f(x) - f \star )+ 1

2\| x - x \star \| 2 followed from Theorem 2.4. Let
f \in \scrF 0,\infty be a twice continuously differentiable function, and let Xt be any trajectory
solution to the SDE (3.2). Thanks to Ito's formula, we compute the derivative of \scrV (\cdot )
with respect to time as follows: d

dtE\scrV (Xt, t) \leqslant  - tE\| \nabla f(Xt)\| 2 + E 1
2Tr((t\nabla 2

xf(Xt) +
I)\Sigma (Xt)). Using the bounded covariance assumption \Sigma (Xt) \preccurlyeq \Sigma and assuming in
addition f to be L-smooth with L < +\infty , a convergence bound in function values is
given by

E(f(Xt)  - f \star ) \leqslant 
\| x0  - x \star \| 2

t
+

1

2

\biggl( 
L
t

2
+ 1

\biggr) 
Tr(\Sigma ).

Such an inequality does not allow us to conclude about convergence of the SDE (3.3)
without further assumptions.

In discrete-time, Taylor and Bach proved a comparable convergence bound for
SGD [46, Theorem 5], applying the Lyapunov performance estimation approach under
similar assumptions (bounded variance, smoothness of f). Optimization methods and
alternative techniques have been developed to ensure the global convergence of SGD
to the optimum, among them averaging [34] and diminishing step sizes.

3.2. Diminishing the step size is a key to success. We study convergence
of SDEs with time-varying step sizes (3.3). In contrast to the deterministic setting, in
which time-varying step sizes correspond to a time rescaling whose benefit disappears
after discretization, such a time rescaling plays a direct role in the variance term
(explicit formula by Orvieto and Lucchi in [30, Theorem 5]).

Let f\in \scrF 0,\infty be a twice continuously differentiable function, Xt be generated by
(3.3), and \scrV be a function. Our goal is to control the maximization problem

max
Xt\in Rd,d\in N, f\in \scrF 0,\infty 

d

dt
E\scrV (Xt, t),

subject to dXt =  - ht\nabla f(Xt)dt + ht(\gamma \Sigma (Xt))
1/2dBt,

where d
dtE\scrV (Xt, t) = E[ \partial 

\partial t\scrV (Xt, t)+ \partial 
\partial x\scrV (Xt, t)

dXt

dt ]+ \gamma 
2ETr( \partial 2

\partial x2\scrV (Xt, t)\Sigma (Xt)) is com-
puted using Ito's formula. The first two terms correspond exactly to taking the de-
rivative in trajectories generated by ODEs (2.15) (or the SDEs (3.3) with \gamma = 0), and
the last term corresponds to a variance term. Because of the trace in a second-order
derivative of f and in the covariance matrix \Sigma (Xt), we do not take this term into
account in an LMI formulation. Instead, we propose to first derive a family of Lya-
punov functions for associated ODEs using LMIs (deterministic setting), and then to
optimize their parameters so that the variance term converges conveniently. In other
words, the following functions \scrV are Lyapunov functions for induced ODEs (\gamma = 0),
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1575

but are not Lyapunov functions for the SDEs under consideration. This approach
allows a systematic computation of such quadratic functions and leads to convergence
guarantees.

Corollary 3.3. Let f \in \scrF 0,\infty be a twice continuously differentiable function,
and let Xt \in Rd be generated by the SDE (3.3). The quadratic function

\scrV (Xt, t) = a
(1)
t (f(Xt)  - f \star ) +

1

2
\| Xt  - x \star \| 2,

with \.a
(1)
t = 2ht, verifies

d
dtE(\scrV (Xt, t) \leqslant h2

tETr((\nabla 2
xxf(Xt)a

(1)
t + 1

2Id)\Sigma (Xt)).

Furthermore, it holds that

E[f(Xt)  - f \star ] \leqslant \| x0 - x \star \| 2

a
(1)
t

+ \gamma 

2a
(1)
t

\int t

0
h2
sETr((\nabla 2

xxf(Xs)a
(1)
s + 1

2Id)\Sigma (Xs))ds.

Proof. The function \scrV is obtained using Corollary 2.8 and is a Lyapunov function
for a nonautonomous first-order gradient flow. The bound for E[f(Xt) - f \star ] is derived
using Ito's formula on \scrV along trajectories Xt generated by the SDE (3.3).

The convergence bound from Corollary 3.3 is divided into two terms: a term that
forgets the initial conditions and a variance term due to noise. Convergence is mostly
controlled by the step size ( \.a

(1)
t = 2ht). Bach and Moulines [3, Theorem 5] provided

a comparable but much more complex analysis for stochastic gradient descent, for
a specific family of step sizes. To compare to our results, let us consider step sizes
defined by ht = 1

(t+1)\alpha , where \alpha \geqslant 0. A possible convergence guarantee arises from

Corollary 3.3 with a
(1)
t = (t + 1)1 - \alpha . The forgetting of the initial condition is thus

bounded by \| x0 - x \star \| 2

(t+1)1 - \alpha . Provided \Sigma (Xt) \preccurlyeq \Sigma , the variance term is bounded by\left\{   
\gamma Tr(\Sigma )

(t+1)1 - \alpha 

\Bigl( 
L (t+1)2 - 3\alpha  - 1

2 - 3\alpha + 1
2
(t+1)1 - 2\alpha  - 1

1 - 2\alpha 

\Bigr) 
if 0 \leqslant \alpha < 1,

\gamma Tr(\Sigma )
log(t)

\Bigl( 
L
\int t

0
log(s+1)
(s+1)2 ds + 1

2 (1  - 1
t+1 )

\Bigr) 
if \alpha = 1.

The variance term converges to zero if and only if \alpha \geqslant 1
2 . In other words, con-

vergence is not guaranteed for constant step sizes (\alpha = 0). For \alpha \in (1/2,2/3), the
convergence in function value is bounded by \scrO ( 1

t2\alpha  - 1 ). For \alpha \in (2/3,1), the con-
vergence in function value is bounded by \scrO ( 1

t1 - \alpha ). As for SGD [3, Theorem 5], the
convergence regime changes at \alpha = 2

3 with a global convergence rate in 1
t1/3

, for which
the variance term and the term that forgets the initial conditions converge at the
same rate (up to log(t)). It is therefore possible to reach convergence with diminish-
ing step sizes. Other techniques, such as averaging, have been developed to improve
the trade-off between faster convergence and larger step sizes.

3.3. Averaging for larger step sizes. Polyak--Ruppert averaging [34, 33] is
a standard way to improve convergence of SGD. In the discrete-time setting, conver-
gence guarantees are considered at an averaged sequence, where ik is drawn uniformly
in [1, . . . , n] and n is the sample size:

xk+1 = xk  - \gamma hk\nabla fik(xk),

\=xk =
1

k

k\sum 
i=1

xi.
(3.4)

Other averaging techniques were developed later, such as primal averaging [45] and
averaging with respect to some nonnegative function [23].
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1576 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

3.3.1. Polyak--Ruppert averaging. In this section, we analyze convergence
properties of an SDE (3.3) approximating SGD with time-varying step sizes under
Polyak--Ruppert averaging. Taylor and Bach [46, Theorem 6] provided a systematic
design of Lyapunov functions for (3.4) and a condition on the step size for convergence
to the optimum. An approximating SDE for Polyak--Ruppert averaging is given by

dXt =  - ht\nabla f(Xt)dt + ht(\gamma \Sigma (Xt))
1/2dBt,

d \=Xt =
Xt  - \=Xt

t
dt,

(3.5)

with step size \gamma > 0 that is taken close to zero, and a variable term ht \in [0,1]. We
introduce the family of quadratic functions taking the averaged sequence into account:

\scrV 
a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t) =

\Biggl( 
a
(1)
t

a
(2)
t

\Biggr) \top \biggl( 
f(Xt)  - f \star 
f( \=Xt)  - f \star 

\biggr) 
+

\biggl( 
Xt  - X \star 
\=Xt  - X \star 

\biggr) \top 

(Pt \otimes Id)

\biggl( 
Xt  - X \star 
\=Xt  - X \star 

\biggr) 
,

(3.6)

where a
(1)
t , a

(2)
t \geqslant 0 and Pt = (

p
(11)
t p

(12)
t

p
(12)
t p

(22)
t

) \succcurlyeq 0 are continuously differentiable with

respect to time. Given a quadratic function \scrV 
a
(1)
t ,a

(2)
t ,Pt

and an SDE (3.5) under

Polyak--Ruppert averaging, we present in Theorem 3.4 a way to control the quantity:

max
f\in \scrF 0,\infty ,d\in N,Xt\in Rd

d

dt
E\scrV 

a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t),

subject to dXt =  - ht\nabla f(Xt)dt + ht(\gamma \Sigma (Xt))
1/2dBt,

d \=Xt =
Xt  - \=Xt

t
dt.

Theorem 3.4. Let ht \geqslant 0, and let at \geqslant 0, Pt \succcurlyeq 0 be continuously differentiable
with respect to time. Let f \in \scrF 0,\infty be a twice continuously differentiable function and
(Xt, \=Xt) \in Rd\times Rd be a trajectory generated by the SDE under Polyak--Ruppert aver-

aging (3.5). Let \scrV be a quadratic function (3.6), such that there exist \lambda 
(1)
t , . . . , \lambda 

(6)
t \geqslant 0

verifying\left(       
\.p
(11)
t +

2p
(12)
t

t \.p
(12)
t +

p
(22)
t  - p

(12)
t

t
\lambda 
(6)
t +\lambda 

(4)
t  - 2htp

(11)
t

2
a
(2)
t

2t  - \lambda 
(5)
t

2

\.p
(12)
t +

p
(22)
t  - p

(12)
t

t \.p
(22)
t  - 2p

(22)
t

t  - \lambda 
(6)
t  - 2htp

(12)
t

2  - a
(2)
t

2t +
\lambda 
(5)
t +\lambda 

(3)
t

2

\lambda 
(6)
t +\lambda 

(4)
t  - 2htp

(11)
t

2  - \lambda 
(6)
t  - 2htp

(12)
t

2  - a
(1)
t 0

a
(2)
t

2t  - \lambda 
(5)
t

2  - a
(2)
t

2t +
\lambda 
(5)
t +\lambda 

(3)
t

2 0 0

\right)       \preccurlyeq 0,

\.a
(1)
t + \lambda 

(1)
t + \lambda 

(5)
t = \lambda 

(4)
t + \lambda 

(6)
t ,

\.a
(2)
t + \lambda 

(2)
t + \lambda 

(6)
t = \lambda 

(3)
t + \lambda 

(5)
t + \.a

(1)
t .

Then, the following inequality is satisfied:

d

dt
E\scrV (Xt, \=Xt, t) \leqslant 

1

2
ETr

\Bigl( 
(a

(1)
t \nabla xxf(Xt) + 2p

(11)
t Id)\Sigma (Xt)

\Bigr) 
h2
t\gamma .

Proof. The proof follows the method from section 2.1.1 (see Appendix B.1).

The variance term 1
2ETr((a

(1)
t \nabla xxf(Xt) + 2p

(11)
t Id)\Sigma (Xt))h

2
t\gamma from Theorem 3.4

increases with a
(1)
t , and its convergence requires additional assumptions on f , for

example smoothness. For this reason, we propose to analyze convergence guarantees
based on functions \scrV 

0,a
(2)
t ,Pt

, on the averaged sequence only.
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Corollary 3.5 (averaging and diminishing step sizes). Let ht \geqslant 0 and a
(2)
t \geqslant 0

be continuously differentiable. Let f \in \scrF 0,\infty be a twice continuously differentiable
function and (Xt, \=Xt) be a trajectory generated by the SDE under Polyak--Ruppert

averaging (3.5). Assuming that \.a
(2)
t \leqslant a

(2)
t

t and t\rightarrow a
(2)
t

tht
is a nonincreasing function,

the function

\scrV (Xt, \=Xt, t) = a
(2)
t (f( \=Xt)  - f \star ) +

a
(2)
t

2tht
\| Xt  - X \star \| 2

verifies d
dtE\scrV (Xt, \=Xt, t) \leqslant a

(2)
t

t htETr(\Sigma (Xt)). Furthermore, it holds that E[f( \=Xt)  - 
f \star ] \leqslant \| x0 - x \star \| 2

2a
(2)
t

+ \gamma 

2a
(2)
t

\int t

0
a(2)
s

s hsETr(\Sigma (Xs))ds.

Proof. The proof follows from the LMI in Theorem 3.4 with the choices \lambda 
(3)
t =

\lambda 
(6)
t = \lambda 

(2)
t = 0, \lambda 

(5)
t =

a
(2)
t

t , \lambda 
(4)
t = \lambda 

(1)
t = htp

(11)
t , \.a

(2)
t =

a
(2)
t

t , \.p
(11)
t =

\.
(
a
(2)
t

tht
), \.p

(12)
t =

\.p
(22)
t = 0.

When a
(2)
t = t (its maximal possible value), the step size verifies \.ht \leqslant 0. The vari-

ance term does not diverge if and only if ht is constant. Recalling the unbounded co-

variance \Sigma t \preccurlyeq \Sigma , a convergence bound is given by E[f( \=Xt) - f \star ] \leqslant \| x0 - x \star \| 2

2t + 1
2Tr(\Sigma )\gamma h.

The decreasing condition on t \rightarrow a
(2)
t

tht
suggests a trade-off between convergence and

diminishing step size, as obtained without averaging.
Under the assumptions of Corollary 3.5, recalling that \Sigma (Xt) \preccurlyeq \Sigma is a bounded

covariance matrix, let ht = 1
(t+1)\alpha be the step size and a

(2)
t = t\beta , where \alpha \geqslant 0 and

0 \leqslant \beta \leqslant 1. The decreasing condition imposes \alpha + \beta \leqslant 1. In comparison with step size
requirements drawn from Corollary 3.3, where convergence required \alpha \geqslant 1

2 , averaging
allows larger step sizes.

A different behavior is expected from \alpha and \beta : on the one hand, an ideal step
size should be large (\alpha small), and on the other hand, we aim at converging as fast
as possible (\beta large). The term that forgets the initial conditions behaves as \scrO ( 1

t\beta 
),

and the variance term behaves as \scrO ( 1
t\alpha ) if \beta \not = \alpha . When \alpha = \beta , the variance term

behaves as \scrO ( log(t)
2t\beta 

). Hence, a natural choice is \alpha = \beta = 1
2 , retrieving results from [3,

Theorem 4], [46, Table 2] in discrete-time optimization.

3.3.2. Weighted averaging. Polyak--Ruppert averaging performs uniform av-
eraging of any trajectory Xt over the time step. We introduce weighted averaging to
analyze SGD that is defined with respect to a function ut \geqslant 0 [23]:

\=xu
t =

1\int t

0
usds

\int t

0

usxsds.

Under weighted averaging, and introducing Cu
t = ut\int t

0
usds

, the SDE is given by

dXt =  - ht\nabla f(Xt)dt + ht(\gamma \Sigma (Xt))
1/2dBt,

d \=Xu
t = (Xt  - \=Xu

t )Cu
t dt.

(3.7)

We study convergence of this generalized version of Polyak--Ruppert averaging and
compare it to traditional averaging techniques.

Theorem 3.6. Let \mu \geqslant 0. Let d\in N be the dimension, f \in \scrF \mu ,\infty be a twice con-
tinuously differentiable (possibly strongly convex) function, and (Xt, \=Xt) be trajectories
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1578 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

generated by an SDE under generalized averaging (3.7). Assuming
\.\bigl( \int t

0
usds

2ht

\bigr) 
2\mu ut, the

function

\scrV (Xt, \=Xu
t , t) =

ut

Cu
t

(f( \=Xu
t )  - f \star ) +

ut

2ht
\| Xt  - x \star \| 2

verifies d
dtE\scrV (Xt, \=Xu

t , t) \leqslant 
1
2utht\gamma ETr(\Sigma (Xt)).

Then, it holds that

E[f( \=Xu
t )  - f \star ] \leqslant 

\| x0  - x \star \| 2u0

2h0

\int t

0
usds

+
\gamma 

4
\int t

0
usds

\int t

0

ushsETr(\Sigma (Xs))ds.

Proof. The proof follows those of Theorem 3.4 and Corollary 3.5 with 1
t \rightarrow Cu

t .

Under the convexity assumption (\mu = 0), ut verifies
\.

(
\int t
0
usds

2ht
) \leqslant 0. Assuming step

sizes of the form ht = 1
(t+1)\alpha and an averaging function ut = 1

(t+1)\beta 
, with \alpha ,\beta \geqslant 0, it

follows that \beta \geqslant \alpha . Recall that the covariance matrix \Sigma (Xt) \preccurlyeq \Sigma is bounded. From
Theorem 3.6, the term that forgets the initial conditions behaves as \scrO ( 1

(t+1)1 - \beta ), and

the variance term behaves as \scrO ( 1
(t+1)\alpha ). Both terms converge at the same rate for

\alpha = \beta = 1
2 (up to log (t + 1)). In discrete time, similar convergence results have been

derived for SGD under Polyak--Ruppert averaging [3, Theorem 6].
Under the strong convexity assumption (\mu > 0), polynomial convergence can

be reached for the term that contains the initial conditions. However, the variance
term cannot converge faster than the step size. Recalling that the covariance matrix
\Sigma (Xt) \preccurlyeq \Sigma is bounded, if ut = (t + 1)\beta and ht = (t + 1) - \alpha with \alpha ,\beta \geqslant 0, the

condition
\.\bigl( \int t

0
usds

2ht

\bigr) 
\leqslant 2\mu ut implies that \alpha = 0. The variance term is then exactly

equal to the step size ht = h0. Hence, weighted averaging allows a better convergence
for the terms containing initial conditions but does not play a role in the variance
term. To conclude, weighted averaging does not improve convergence results obtained
under Polyak--Ruppert averaging. The trade-off between the forgetting of the initial
conditions and the noise term mostly relies on step sizes.

We have analyzed convergence of SGD together with averaging techniques using
approximating SDEs (3.3). Continuous-time analyses lead to similar convergence re-
sults, while benefiting from simpler formulations and fewer assumptions especially on
step sizes. Using this approach, we analyzed the trade-off between nonuniform averag-
ing and step sizes, paving the way to a better understanding of averaging techniques.
In the next section, we explore new convergence analyses for stochastic accelerated
methods.

4. Accelerating the gradient flow. For both stochastic and deterministic
models, we have retrieved known convergence results for continuous-time models ap-
proximating optimization methods. In this section, we provide convergence guarantees
for a family of second-order gradient flows, including in particular AGF (2.14).

In the deterministic setting, convergence of gradient descent was improved using
a momentum. In this section, let f \in \scrF 0,\infty be a twice continuously differentiable
function and \gamma > 0 be constant step sizes. An approximating SDE (for order-1 weak
approximations) for Nesterov's accelerated gradient is given by [26, Theorem 16, sec-
tion 4.4]

d2Xt +
3

t
dXt + \nabla f(Xt)dt +

\sqrt{} 
\gamma \Sigma (Xt)dBt = 0.(4.1)
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SYSTEMATIC LYAPUNOV ANALYSES OF CONTINUOUS-TIME MODELS 1579

As for SGD, the function \scrV (x, \.x, t) = t2(f(x) - f \star ) + 2\| (x - x \star ) + t
2 \.x\| 2 obtained from

Theorem 2.7 does not allow us to conclude about convergence to a stationary point of
trajectories Xt generated by the stochastic accelerated gradient flows (4.1). Using the
bounded covariance assumption \Sigma (Xt) \preccurlyeq \Sigma and applying Ito's formula to \scrV (\cdot ) along
Xt, we have

E[f(Xt)  - f \star ] \leqslant 
\| x0  - x \star \| 2

t2
+ \gamma Tr(\Sigma )3t.

In the following, we explore Polyak--Ruppert averaging together with diminishing step
sizes to analyze convergence of second-order SDEs.

4.1. Averaging does not preserve convergence rates. Averaging was a key
to success for improving convergence of SGD (see section 3). It is natural to wonder
if averaging preserves the acceleration of Nesterov's gradient flow [42]. Let us define
the stochastic accelerated gradient flow under Polyak--Ruppert averaging:

d2Xt +
3

t
dXt + \nabla f(Xt)dt +

\sqrt{} 
\gamma \Sigma dBt = 0,

d \=Xt =
Xt  - \=Xt

t
dt.

(4.2)

The family of quadratic functions in consideration is given by

\scrV 
a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t) =

\Biggl( 
a
(1)
t

a
(2)
t

\Biggr) \top \biggl( 
f(Xt)  - f \star 
f( \=Xt)  - f \star 

\biggr) 
+

\left(  \.Xt

Xt  - X \star 
\=Xt  - X \star 

\right)  \top 

(Pt \otimes Id)

\left(  \.Xt

Xt  - X \star 
\=Xt  - X \star 

\right)  ,

(4.3)

where Pt \succcurlyeq 0 and a
(1)
t , a

(2)
t \geqslant 0 are continuously differentiable functions.

Theorem 4.1. Let a
(1)
t , a

(2)
t \geqslant 0 and Pt \succcurlyeq 0 be continuously differentiable with

respect to time. Let f \in \scrF 0,\infty be a twice continuously differentiable function and
(Xt, \=Xt) be a trajectory generated by the stochastic accelerated gradient flow under
Polyak--Ruppert averaging (4.2) with constant step sizes (ht = 1). Let, in addition,
\scrV = \scrV 

a
(1)
t ,a

(2)
t ,Pt

(\cdot ) be a quadratic function (4.3). Then it holds that

\bullet When a
(1)
t = 0, if the function \scrV verifies d

dtE\scrV (Xt, \=Xt, t) \leqslant Tr(2p
(11)
t \gamma \Sigma (Xt)),

then \scrV = 0.
\bullet When a

(2)
t = 0, the function

\scrV (Xt, t) = a
(1)
t (f(Xt)  - f \star ) +

1

2a
(1)
t

\| a(1)t
\.Xt + \.a

(1)
t (Xt  - x \star )\| 2

verifies d
dtE\scrV (Xt, t) \leqslant ETr(2a

(1)
t \gamma \Sigma (Xt)), with a

(1)
t \leqslant t2. Furthermore, it

holds that E[f(Xt)  - f \star ] \leqslant 2\| x0 - x \star \| 2

a
(1)
t

+ 1

2a
(1)
t

\gamma 
\int t

0
a
(1)
s ETr(\Sigma (Xs))ds.

Proof. The proof follows from Theorem 2.11 (see Appendix B.2). The first state-
ment holds when considering a function \beta t \geqslant 0 instead of 3

t .

Without further assumptions on the covariance \Sigma t, the accelerated gradient flow
under Polyak--Ruppert averaging (4.2) with constant step sizes admits no quadratic
function that allows forgetting of the initial conditions while reducing the variance
term. Therefore, Polyak--Ruppert averaging plays a different role in the stochastic
accelerated gradient flow compared to the stochastic gradient flow approximating
SGD (3.5).
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1580 C\'ELINE MOUCER, ADRIEN TAYLOR, AND FRANCIS BACH

4.2. Diminishing step sizes do not help preserve acceleration. Averaging
under constant step sizes was not conclusive for finding a convergence guarantee for
Nesterov's accelerated gradient flow with a diffusion term. We consider a second-order
nonautonomous stochastic gradient flow with time-varying step sizes ht \geqslant 0,

d2Xt + \beta tdXt + ht\nabla f(Xt)dt + ht

\sqrt{} 
\gamma \Sigma (Xt)dBt = 0.(4.4)

To study the convergence of (4.4), we generate a quadratic function within the class
(2.11).

Theorem 4.2. Let ht \geqslant 0, \gamma > 0, and at \geqslant 0 be continuously differentiable with
respect to time. Let f \in \scrF 0,\infty be a twice continuously differentiable function and Xt

be a trajectory generated by the stochastic second-order gradient flow (4.4). Assuming

\.at \leqslant at
2
3 (\beta t + 1

2

\.ht

ht
) and t\rightarrow ( \.at)

2

2htat
a decreasing function, the function

\scrV (Xt) = at(f(Xt)  - f \star ) +
1

2htat
\| at \.Xt + \.at(Xt  - x \star )\| 2

verifies d
dtE\scrV (Xt, t) \leqslant 1

4ETr(atht\Sigma (Xt))\gamma .

Proof. This result is obtained by extending the LMI for ODEs from Theorem 2.11
and Corollary 2.12 to time-varying step sizes.

To compare to previous results, we consider parametrized step sizes ht = 1
(t+1)\alpha 

and SDEs with \beta t = b
t , where \alpha , b > 0. We derive a convergence bound using Theorem

4.2 together with Theorem 2.11, that \.at \leqslant \beta at

t , where \beta \leqslant min( 2b - \alpha 
3 ,2  - \alpha ):

E[f(Xt)  - f \star ] \leqslant 
\beta 2

t\beta 
\| x0  - x \star \| 2 +

\gamma 

4t\beta 

\int t

0

s\beta 

(s + 1)\alpha 
ETr(\Sigma (Xs))ds.

On the one hand, the smaller the step sizes, the better the convergence for the term
that contains the initial conditions. On the other hand, under bounded covariance
\Sigma (Xt) \preccurlyeq \Sigma , the variance term behaves as \scrO ( 1

t\beta 
) if \beta \leqslant \alpha  - 1, and as \scrO ( 1

t\alpha  - 1 ) otherwise
(convergence requiring then \alpha \leqslant 1 and \beta \leqslant 1). For Nesterov's accelerated gradient
flow with b = 3, we have \beta = 2  - \alpha \leqslant \alpha  - 1, and therefore \alpha \geqslant 3

2 . Taking \alpha = 3
2 , a

convergence bound is given by

E[f(Xt)  - f \star ] \leqslant 
9

4
\surd 
t
\| x0  - x \star \| 2 +

log t\surd 
t
\gamma Tr(\Sigma ).

We retrieve the result from Corollary 3.5 for the SDE approximating SGD under
Polyak--Ruppert averaging. Yet this result requires smaller step sizes (\alpha \geqslant 3

2 ). It
does not seem possible to accelerate SGD with diminishing step sizes. Ghadimi and
Lan [36, Corollary 3] proved a convergence bound for a stochastic accelerated gradient
method with \beta = 2 and \alpha = 1

2 that we do not retrieve. Yet, in their approach, functions
are minimized over a compact convex domain, whereas our approach focuses on an
unbounded domain.

5. Conclusion and future work. We have developed a systematic approach for
finding quadratic Lyapunov functions for families of ODEs and SDEs approximating
SGD. Verifying such a Lyapunov function is cast as verifying the feasibility of a
small-sized LMI. From this formulation, it is possible to efficiently search for quadratic
Lyapunov functions for arriving to convergence bounds. While we retrieve convergence
guarantees similar to those of discrete-time systems, continuous-time models require
fewer assumptions on the problem classes and can be analyzed through shorter proofs.
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While obtaining guarantees for stochastic optimization methods might be tedious,
the SDE approach allows for simpler analysis of the trade-off between the variance
term and the term that forgets the initial conditions. A shortcoming of this approach
is that this analysis does not include approximation guarantees between optimization
methods and their continuous-time counterparts. In the deterministic setting, stabil-
ity techniques are often developed to quantify this approximation efficiently [17]. In
stochastic analysis, stochastic modified equations have been introduced by Li, Tai,
and E [25, Theorem 1] to better approximate SGD, and stochastic methods with
momentum. For nonconvex functions, some analyses have also been done by Shi,
Su, and Jordan [41]. However, these approximation theorems often require many as-
sumptions on the class of functions, which we believe could be further simplified using
computer-assisted proofs.

Concerning possible extensions, this work relies on a specific family of quadratic
Lyapunov functions provided by (2.11) and (2.8). Whereas it was sufficient for our
purposes, it turns out that it is possible to extend it by taking into account terms of
the form

\int t

0
f(Xs)ds or integrals of the quadratic terms that are used in our Lyapunov

functions. While we did not consider those terms here, they could be useful for study-
ing other methods or in other settings. The attentive reader might also have realized
that the PEP technique for continuous-time systems can be applied without difficulty
to differential [7, section 3.2] and monotone inclusion [5, 6] problems. For monotone
inclusions, interpolation results for casting the PEPs as semidefinite programs can
be found in [35]. Finally, we note that it is still not clear how to use PEP-related
techniques for directly studying higher-order methods and assumptions (already ap-
pearing in the variance term in the stochastic setting), which are also common for
continuous-time systems [2], or equivalents in the monotone inclusion setting [10, 8].
The problem here is the lack of a clean performance estimation reformulation, beyond
the somewhat indirect approach by [11]. We leave those investigations for future work.

Appendix A. Proof for ODEs.

A.1. Proofs for Theorem 2.4.

Proof. Following the same procedure as for Theorem 2.1 under the strong-convexity
assumption, and given a quadratic Lyapunov function \scrV at,ct(Xt, t) = at(f(xt) - f \star ) +
ct\| Xt  - x \star \| 22 with at, ct \geqslant 0, the maximization problem can be formulated into a
semidefinite program

0 \geqslant max
G\succcurlyeq 0,F\in R2

b\top 0 F + Tr(A0G),

subject to b\top i F + Tr(AiG) \geqslant 0, i\in \{ 1,2\} ,

where A0 = ( \.ct  - ct
 - ct  - at

), A1 = ( 0 1/2
1/2 0

), A2 = ( 0 0
0 0 ), b0 = \.at[1,  - 1]\top , b1 = [ - 1, 1]\top , and

b2 = [1,  - 1]\top , whose Lagrangian dual is given by the feasibility problem

min
\lambda 
(1)
t ,\lambda 

(2)
t \geqslant 0

0 s. t. S =

\Biggl( 
\.ct  - ct +

\lambda 
(1)
t

2

 - ct +
\lambda 
(1)
t

2  - at

\Biggr) 
\preccurlyeq 0, \.at = \lambda 

(1)
t  - \lambda 

(2)
t .

This formulation is exactly the LMI feasibility problem from the statement of Theo-
rem 2.4.
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A.2. Proof for Corollary 2.12.

Proof. We prove the claim in the convex case; the strongly convex setting is
deduced by assuming an exponential form for the parameters at = aet\tau and Pt = Pet\tau ,
where \tau > 0 is a (linear) convergence rate to be determined.

From Theorem 2.11, verifying the Lyapunov function can be framed as verifying
the feasibility of an LMI. That is, the desired Lyapunov function can be deduced from
the existence of \lambda 

(1)
t , \lambda 

(2)
t \geqslant 0 such that

S =

\left(    
 - \mu 

2 (\lambda 
(1)
t + \lambda 

(2)
t ) + \.p

(11)
t p

(11)
t  - \beta tp

(12)
t + \.p

(12)
t  - p

(12)
t +

\lambda 
(1)
t

2

p
(11)
t  - \beta tp

(12)
t + \.p

(12)
t 2(p

(12)
t  - \beta tp

(22)
t ) + \.p

(22)
t  - p

(22)
t + at

2

 - p
(12)
t +

\lambda 
(1)
t

2  - p
(22)
t + at

2 0

\right)    \preccurlyeq 0,

\.at = \lambda 
(1)
t  - \lambda 

(2)
t .

Because of the zero diagonal term in S = (sij)1\geqslant ij\geqslant 3 \preccurlyeq 0, it follows that p
(22)
t = at

2

and p
(12)
t = \.at

2 (otherwise, the submatrix ( s22 s23
s23 0 ) \preccurlyeq 0 has a strictly nonpositive

determinant, which is a contradiction).

Let us now assume that \lambda 
(2)
t = 0, which leads to \.at = \lambda 

(1)
t . Because of the null

entries, the matrix S can be reduced to a 2 \times 2 semidefinite negative matrix. Such a
matrix has nonpositive diagonal terms (since s11s22 \geqslant (s12)2 and s11 +s22 \geqslant 0), which

are \.p
(11)
t \leqslant 0 and 2(p

(12)
t  - \beta tp

(22)
t ) + \.p

(22)
t , which simplifies into \.at \leqslant 2

3\beta tat.
For all \epsilon > 0, after integration of \.at \leqslant 2

3\beta tat between \epsilon and t, we have that

at \leqslant a\epsilon e
\int t
\epsilon 

2
3\beta sds. Therefore, at \leqslant lim\epsilon \rightarrow 0 a\epsilon e

\int t
\epsilon 

2
3\beta sds. Recalling that Pt is positive

semidefinite, its determinant is nonnegative p
(11)
t p

(22)
t  - (p

(12)
t )2 \geqslant 0, that is, p

(11)
t \geqslant 

(p
(12)
t )2

p
(22)
t

= ( \.at)
2

2at
. After integration between 0 and t, we obtain the following bound on

at:
\surd 
at \leqslant 

\surd 
a0 +

\sqrt{} 
p
(11)
0

2 t.

In other words, at \leqslant min
\bigl( 
(
\surd 
a0 +

\sqrt{} 
p
(11)
0

2 t)2, lim\epsilon \rightarrow 0 a\epsilon e
\int t
\epsilon 

2
3\beta sds

\bigr) 
.

Appendix B. Proofs for SDEs.

B.1. Proof for Theorem 3.4.

Proof. We rewrite the SDE into\biggl( 
dXt

d \=Xt

\biggr) 
=

\biggl( \biggl( 
0 0
1
t  - 1

t

\biggr) 
\otimes Id

\biggr) \biggl( 
Xt
\=Xt

\biggr) 
dt +

\biggl( \biggl( 
 - ht 0

0 0

\biggr) 
\otimes Id

\biggr) \biggl( 
\nabla f(Xt)
\nabla f( \=Xt)

\biggr) 
dt

+

\biggl( \biggl( 
ht(\gamma \Sigma (Xt))

1/2

0

\biggr) 
\otimes Id

\biggr) 
dBt

and denote Yt =
\Bigl( 
Xt
\=Xt

\Bigr) 
.

We consider the quadratic function (3.6) \scrV 
a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t) = \scrV (Yt, t). Ap-

plying Ito's formula, its derivative with respect to time is d
dt\scrV (Yt, t) = \partial 

\partial t\scrV (Yt, t) +
\partial 
\partial y\scrV 

dYt

dt + 1
2\gamma h

2
tTr[ \partial 2

\partial Y 2
t
\scrV (Yt, t)

\top (\Sigma (Xt)
0

)]. By taking the expectation of Ito's formula,

we have d
dtE\scrV (Yt, t) = E[ \partial 

\partial t\scrV (Yt, t) + \partial 
\partial y\scrV 

dYt

dt ] + 1
2\gamma h

2
tETr( \partial 2

\partial Y 2
t
\scrV (Yt, t)

\top (\Sigma (Xt)
0

)).

The variance term 1
2\gamma h

2
tETr( \partial 2

\partial Y 2
t
\scrV (Yt, t)

\top (\Sigma (Xt)
0

)) depends on the second deriv-

ative of f in the space variable (Xt), and on the covariance \Sigma t. We do not take this
term into account in the performance estimation framework.
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We formulate the problem of verifying a quadratic function as verifying the in-
equality d

dtE\scrV (Xt, \=Xt, t) \leqslant 1
2\gamma h

2
tETr( \partial 2

\partial X2
t
\scrV (Xt, \=Xt, t)

\top \Sigma (Xt)) (that is, E[ \partial 
\partial t\scrV (Yt, t) +

\partial 
\partial y\scrV 

dYt

dt ] \leqslant 0) holds for any function twice continuously differentiable f \in \scrF 0,\infty and

any trajectory (Xt, \=Xt) generated by the SDE under Polyak--Ruppert averaging (3.5).
This problem is equivalent to verifying that d

dt\scrV ( \~Yt, t) \leqslant 0 holds for any twice

continuously differentiable function f \in \scrF 0,\infty and any trajectory \~Yt = ( \~Xt
\~\=Xt)

\top 

generated by deterministic gradient flow from the SDE (3.5) with \gamma = 0.
We follow the methodology developed in section 2 for ODEs. We formulate the

verification of such a Lyapunov function as the maximization problem

0 \geqslant max
Xt\in Rd,d\in N, f\in \scrF 0,\infty 

d

dt
\scrV 
a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t)

subject to \.Xt =  - ht\nabla f( \=Xt),
\.\=Xt =

Xt  - \=Xt

t
dt.

This maximization problem can be formulated as the following SDP program:

min
\lambda 
(i)
t \geqslant 0, i\in \{ 1,...,6\} 

0\left(        
\.p
(11)
t +

2p
(12)
t

t \.p
(12)
t +

p
(22)
t  - p

(12)
t

t
\lambda 
(6)
t +\lambda 

(4)
t  - 2htp

(11)
t

2
a
(2)
t

2t  - \lambda 
(5)
t

2

\.p
(12)
t +

p
(22)
t  - p

(12)
t

t \.p
(22)
t  - 2p

(22)
t

t  - \lambda 
(6)
t  - 2htp

(12)
t

2  - a
(2)
t

2t +
\lambda 
(5)
t +\lambda 

(3)
t

2

\lambda 
(6)
t +\lambda 

(4)
t  - 2htp

(11)
t

2  - \lambda 
(6)
t  - 2htp

(12)
t

2  - a
(1)
t 0

a
(2)
t

2t  - \lambda 
(5)
t

2  - a
(2)
t

2t +
\lambda 
(5)
t +\lambda 

(3)
t

2 0 0

\right)        \preccurlyeq 0,

\.a
(1)
t + \lambda 

(1)
t + \lambda 

(5)
t = \lambda 

(4)
t + \lambda 

(6)
t ,

\.a
(2)
t + \lambda 

(2)
t + \lambda 

(6)
t = \lambda 

(3)
t + \lambda 

(5)
t + \.a

(1)
t .

Note that the Gram matrix G and function value vector F to be introduced are
different from those in the setting explored in section 2; more precisely, G=Q\top Q\succcurlyeq 0,
Q = [Xt  - x \star , \=Xt  - x \star , gt, \=gt], and F = (f(Xt), f( \=Xt), f \star ).

The final inequality follows from Ito's formula.

B.2. Proof for Theorem 4.1.

Proof. From the reasoning from Theorems 2.4 and 3.4, the worst-case guarantee
can be formulated into a maximization problem:

max
f\in \scrF 0,\infty ,d\in N,Xt\in R\mathrm{d}

d

dt
\scrV 
a
(1)
t ,a

(2)
t ,Pt

(Xt, \=Xt, t),

s.t. d2Xt + \beta tdXt + \nabla f(Xt)dt +
\sqrt{} 

\gamma \Sigma dBt = 0,

d \=Xt =
Xt  - \=Xt

t
dt.

A control of this quantity can be achieved with the following LMI, for \lambda 
(i)
t \geqslant 0, i \in 

\{ 1, . . . ,6\} , and where \ast corresponds to the symmetric entries of the matrix, and where
\beta t = 3

t :
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\.p
(11)
t \.p

(12)
t  - \beta tp

(12)
t \.p

(13)
t  - p

(13)
t

t  -  - p
(11)
t 0

 - 2\beta tp
(11)
t +

p
(13)
t

t + p
(22)
t p

(12)
t \beta t + p

(23)
t

\ast \.p
(22)
t + 2

p
(22)
t

t p
(23)
t  - 2

2p
(22)
t

t a
(1)
t  - p

(12)
t

a
(2)
t

2t  - \lambda 
(5)
t

2

+
p
(33)
t

t +
\lambda 
(4)
t +\lambda 

(6)
t

2

\ast \ast \.p
(33)
t  - 2p

(33)
t

t  - \lambda 
(6)
t

2  - p
(13)
t

\lambda 
(5)
t +\lambda 

(3)
t  - a

(2)
t /t

2
\ast \ast \ast 0 0
\ast \ast \ast \ast 0

\right)               
\preccurlyeq 0,

\lambda 
(6)
t + \lambda 

(4)
t = \lambda 

(5)
t + \lambda 

(1)
t + \.a

(1)
t , \lambda 

(2)
t + \lambda 

(6)
t + \.a

(2)
t = \lambda 

(3)
t + \lambda 

(5)
t .

Thus, p
(11)
t = 0, and because Pt is positive semidefinite, p

(12)
t = p

(13)
t = 0. If in addition

a
(1)
t = 0, the unique feasible Lyapunov function is \scrV 

a
(1)
t ,a

(2)
t ,Pt

= 0. Otherwise, the LMI

can be simplified to the LMI of Theorem 2.11, and the Lyapunov function follows from
Corollary 2.12.
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